

Johannes Niedermayer

Michael Kitzmantel

M3DP – WHEN 3D COMPONENTS GROW BEYOND THE POWDER BED!

ADDITIVE MANUFACTURING WITH HIGH EFFICIENCY

credit: Syrovatka *courtesy RHP*

SBI – COMPETENCES & SOLUTIONS

AM-SOLUTIONS @ SBI

AM – A SHORT OVERVIEW

Classification of AM-processes according to ASTM F-42

ADDITIVE MANUFACTURING BY PMD®

- The plasma torch is moved by a CNC gantry system along an arbitrary path and creates a weld pool on a substrate plate.
- By adding wire into the weld pool material deposition is achieved. Putting one deposition over the previous a desired part can be generated.
- **PMD** is a "**near net shape**" process and means that post processing like lathing and milling are almost always necessary.
- The process works with all fusion weldable metals like steel, nickle-base alloys, titanium, aluminium,...
- The **M3DP** is a pure AM-system and therefore has no subtractive function

PMD COMPARED WITH OTHER AM TECHNOLOGIES

PMD[®] – PLASMA METAL DEPOSITION

M3DP - MODULAR BUILD CHAMBER

Buildvolume 2000 x 600mm x 600mm 5-Axis-System for 2.5D build-up

Buildvolume Ø1000mm x 800mm 8-Axis-System for 3D build-up

GEOMETRIES

• Cylindric

- tubes
- pipes

• 2.5D & 3D parts

- Structural parts
- consoles
- Print2Forge

Spherical

- Domes
- Tanks

• Hybrid

- turbines
- bliscs
- repair
- Forge2Print

GEOMETRIES

High complexity

- Lattice structures
- Cooling channels

 Topological optimized structures

- High resolution / Net-shape
 - Screws

- Consolidated
 parts
 - Chainmail

M3DP OUR AM SYSTEM

Antiox - Active GAS Shield Technology*

M3DP-SL SCIENTIFIC LINE

Antiox - Active Gas Shield Technology*

Fully functional M3DP System with smaller footprint and many options for R&D

SBI ADDITIVE MANUFACTURING SOFTWARE

M3DP & M3DP-SL ADDITIVE MANUFACTURING SYSTEMS

	M3DP	M3DP-SL		
Dimensions	5000 x 2400 x 4200 mm (X-Y-Z)	1700 x 1400 x 2600 mm (X-Y-Z)		
Buildvolume	2000mm x 600mm x 600mm	Ø400 mm x 500 mm		
Mass	7.000kg	3.000kg		
max. payload	650kg	250kg		
Airtight system	Yes - optional	Yes - optional		
Feedstock	Metal wire & powder	Metal wire & powder		
Energy source	Plasma arc	Plasma arc		
Deposition rate	max. 10 kg/h for nickel-base-alloys 4,5 kg/h for titanium	max. 10 kg/h for nickel-base-alloys 4,5 kg/h for titanium		

PMD ROBOTIC

QUALITY MANAGEMENT

The AM process is supervised and controlled throughout the whole build up:

✓ SBI Camera system

process recording and visual supervision by operator

✓ SBI Datalogger (for all process paramters) coordinates, process parameters, errors,... which are connected to the video by timestamp

✓ 3D scanner implementation

3D scan of the deposited material after each layer and matching of the deposited structure with a should-be 3D model; adaptive Z-offset control

$\checkmark\,$ Pyrometer implementation

For checking interlayer temperature and temperature in general

APPLICATION STUDIES

- **o** Gearfork Bracket
- \circ 17-4 PH powder

• Space Telescope part

 \circ Ti Alloy powder + wire

STUDY: GEARFORK BRACKET

SUPREME

- ✓ Batch process
- ✓ Economic production
- ✓ Reduced post processing
- ✓ Reduced resources

- \circ 2.5 D production
- Use of base plate
- Water jet cutting + machining of holes / functional surfaces
- Argon box to save Argon (and keep fumes, residual powder)

STUDY: ATHENA SPACE TELESCOPE PART

STUDY: ATHENA SPACE TELESCOPE PART

1 Segment	PMD [®] -ALM	Machining		
Raw Material need	290 kg	1.600 kg		
Final Part weight	ca. 160 kg	ca. 160 kg		
Buy to Fly (BTF)	ca. 1,8: 1	~ 10: 1!		
Material Waste	130 kg	1.440 kg !		

Demonstrator	PMD [®] -ALM	Machining
Raw Material need	45 kg	205 kg
Final Part weight	ca.25 kg	ca. 25 kg
Buy to Fly (BTF)	ca. 1,8:1	~ 8,4: 1!
Material Waste	ca. 20 kg	180 kg !

6 Segments -> 8,6 tons of waste vs. 800kg of waste

EXAMPLE TITANIUM ALLOY

Material properties

	Material	Origin	Mechanical properties		
Standard			UTS MPa	YS MPa	A %
ASTM B348	Grade 5	Billet	895- 1000	828-910	10-18
ASTM B367	Grade 5-C	Casted	895	825	5
RHP	Ti-6Al-4V	PMD	895-930	825-865	10-13

ADVANCED MANUFACTURING FOR USE IN SPACE

credit: Syrovatka *courtesy RHP*

SBI – THE SPIRT OF TOMORROW!

www.sbi.at

WE DO IT PLASMA!